Initial commit: ASL handshape recognition project

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
2026-01-19 22:19:15 -05:00
commit 41b3b95c42
11 changed files with 883 additions and 0 deletions

127
train_mlp.py Executable file
View File

@@ -0,0 +1,127 @@
#!/usr/bin/env python3
"""
train_mlp.py
Train a small MLP on landmarks for a single letter (binary: Letter vs Not_Letter).
Expected workflow:
python prep_landmarks_binary.py --letter A # saves landmarks_A/
python train_mlp.py --letter A --epochs 40 --batch 64
python infer_webcam.py --letter A
"""
import os, json, argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader
def get_device():
return torch.device("mps") if torch.backends.mps.is_available() else torch.device("cpu")
class MLP(nn.Module):
def __init__(self, in_dim, num_classes):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, 128),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, num_classes),
)
def forward(self, x): return self.net(x)
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--letter", required=True, help="Target letter (AZ)")
ap.add_argument("--epochs", type=int, default=40)
ap.add_argument("--batch", type=int, default=64)
ap.add_argument("--lr", type=float, default=1e-3)
ap.add_argument("--landmarks", default=None,
help="Landmarks folder (default: landmarks_<LETTER>)")
ap.add_argument("--out", default=None,
help="Output filename (default: asl_<LETTER>_mlp.pt)")
args = ap.parse_args()
letter = args.letter.upper()
landmarks_dir = args.landmarks or f"landmarks_{letter}"
out_file = args.out or f"asl_{letter}_mlp.pt"
# Load data
trX = np.load(os.path.join(landmarks_dir, "train_X.npy"))
trY = np.load(os.path.join(landmarks_dir, "train_y.npy"))
vaX = np.load(os.path.join(landmarks_dir, "val_X.npy"))
vaY = np.load(os.path.join(landmarks_dir, "val_y.npy"))
with open(os.path.join(landmarks_dir, "class_names.json")) as f:
classes = json.load(f)
print(f"Letter: {letter}")
print(f"Loaded: train {trX.shape} val {vaX.shape} classes={classes}")
# Standardize using train mean/std
X_mean_np = trX.mean(axis=0, keepdims=True).astype(np.float32)
X_std_np = (trX.std(axis=0, keepdims=True) + 1e-6).astype(np.float32)
trXn = (trX - X_mean_np) / X_std_np
vaXn = (vaX - X_mean_np) / X_std_np
# Torch datasets
tr_ds = TensorDataset(torch.from_numpy(trXn).float(), torch.from_numpy(trY).long())
va_ds = TensorDataset(torch.from_numpy(vaXn).float(), torch.from_numpy(vaY).long())
tr_dl = DataLoader(tr_ds, batch_size=args.batch, shuffle=True)
va_dl = DataLoader(va_ds, batch_size=args.batch, shuffle=False)
device = get_device()
model = MLP(in_dim=trX.shape[1], num_classes=len(classes)).to(device)
criterion = nn.CrossEntropyLoss()
opt = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-4)
sched = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=args.epochs)
best_acc, best_state = 0.0, None
for epoch in range(1, args.epochs + 1):
# Train
model.train()
tot, correct, loss_sum = 0, 0, 0.0
for xb, yb in tr_dl:
xb, yb = xb.to(device), yb.to(device)
opt.zero_grad(set_to_none=True)
logits = model(xb)
loss = criterion(logits, yb)
loss.backward()
opt.step()
loss_sum += loss.item() * yb.size(0)
correct += (logits.argmax(1) == yb).sum().item()
tot += yb.size(0)
tr_loss = loss_sum / max(1, tot)
tr_acc = correct / max(1, tot)
# Validate
model.eval()
vtot, vcorrect = 0, 0
with torch.no_grad():
for xb, yb in va_dl:
xb, yb = xb.to(device), yb.to(device)
logits = model(xb)
vcorrect += (logits.argmax(1) == yb).sum().item()
vtot += yb.size(0)
va_acc = vcorrect / max(1, vtot)
sched.step()
print(f"Epoch {epoch:02d}: train_loss={tr_loss:.4f} train_acc={tr_acc:.3f} val_acc={va_acc:.3f}")
if va_acc > best_acc:
best_acc = va_acc
# Save stats as **tensors** (future-proof for torch.load safety)
best_state = {
"model": model.state_dict(),
"classes": classes,
"X_mean": torch.from_numpy(X_mean_np), # tensor
"X_std": torch.from_numpy(X_std_np), # tensor
}
torch.save(best_state, out_file)
print(f" ✅ Saved best → {out_file} (val_acc={best_acc:.3f})")
print("Done. Best val_acc:", best_acc)
if __name__ == "__main__":
main()