Files
slr_handshapes_locations/eval_val.py
2026-01-19 22:27:20 -05:00

62 lines
2.2 KiB
Python
Executable File

#!/usr/bin/env python3
# Evaluate a trained SeqGRU on the validation set; reads input_dim from meta.json
import os, json, argparse
import numpy as np
import torch, torch.nn as nn
from sklearn.metrics import classification_report, confusion_matrix
class SeqGRU(nn.Module):
def __init__(self, input_dim, hidden=128, num_classes=26):
super().__init__()
self.gru = nn.GRU(input_dim, hidden, batch_first=True, bidirectional=True)
self.head = nn.Sequential(
nn.Linear(hidden*2, 128),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, num_classes),
)
def forward(self, x):
h,_ = self.gru(x)
return self.head(h[:, -1, :])
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--landmarks", default="landmarks_seq32")
ap.add_argument("--model", required=True)
args = ap.parse_args()
vaX = np.load(os.path.join(args.landmarks,"val_X.npy"))
vaY = np.load(os.path.join(args.landmarks,"val_y.npy"))
classes = json.load(open(os.path.join(args.landmarks,"class_names.json")))
meta = json.load(open(os.path.join(args.landmarks,"meta.json")))
T = int(meta.get("frames", vaX.shape[1]))
input_dim = int(meta.get("input_dim", vaX.shape[-1]))
state = torch.load(args.model, map_location="cpu", weights_only=False)
X_mean, X_std = state["X_mean"], state["X_std"]
if isinstance(X_mean, torch.Tensor): X_mean = X_mean.numpy()
if isinstance(X_std, torch.Tensor): X_std = X_std.numpy()
X_mean = X_mean.astype(np.float32)
X_std = (X_std.astype(np.float32) + 1e-6)
vaXn = (vaX - X_mean) / X_std
device = torch.device("mps") if torch.backends.mps.is_available() else torch.device("cpu")
model = SeqGRU(input_dim=input_dim, hidden=128, num_classes=len(classes))
model.load_state_dict(state["model"])
model.eval().to(device)
with torch.no_grad():
xb = torch.from_numpy(vaXn).float().to(device)
logits = model(xb)
pred = logits.argmax(1).cpu().numpy()
cm = confusion_matrix(vaY, pred)
print("Classes:", classes)
print("\nConfusion matrix (rows=true, cols=pred):\n", cm)
print("\nReport:\n", classification_report(vaY, pred, target_names=classes))
if __name__ == "__main__":
main()