61 lines
2.1 KiB
Python
Executable File
61 lines
2.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# eval_seq_val.py
|
|
import os, json, argparse
|
|
import numpy as np
|
|
import torch, torch.nn as nn
|
|
from sklearn.metrics import classification_report, confusion_matrix
|
|
|
|
class SeqGRU(nn.Module):
|
|
def __init__(self, input_dim=63, hidden=128, num_classes=26):
|
|
super().__init__()
|
|
self.gru = nn.GRU(input_dim, hidden, batch_first=True, bidirectional=True)
|
|
self.head = nn.Sequential(
|
|
nn.Linear(hidden*2, 128),
|
|
nn.ReLU(),
|
|
nn.Dropout(0.2),
|
|
nn.Linear(128, num_classes),
|
|
)
|
|
def forward(self, x):
|
|
h,_ = self.gru(x)
|
|
h_last = h[:, -1, :]
|
|
return self.head(h_last)
|
|
|
|
def main():
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument("--landmarks", default="landmarks_seq32")
|
|
ap.add_argument("--model", default="asl_seq32_gru_ABJZ.pt")
|
|
args = ap.parse_args()
|
|
|
|
vaX = np.load(os.path.join(args.landmarks,"val_X.npy")) # (N, T, 63)
|
|
vaY = np.load(os.path.join(args.landmarks,"val_y.npy"))
|
|
classes = json.load(open(os.path.join(args.landmarks,"class_names.json")))
|
|
meta = json.load(open(os.path.join(args.landmarks,"meta.json")))
|
|
T = int(meta.get("frames", 32))
|
|
|
|
state = torch.load(args.model, map_location="cpu", weights_only=False)
|
|
X_mean, X_std = state["X_mean"], state["X_std"]
|
|
if isinstance(X_mean, torch.Tensor): X_mean = X_mean.numpy()
|
|
if isinstance(X_std, torch.Tensor): X_std = X_std.numpy()
|
|
X_mean = X_mean.astype(np.float32)
|
|
X_std = (X_std.astype(np.float32) + 1e-6)
|
|
|
|
vaXn = (vaX - X_mean) / X_std
|
|
|
|
device = torch.device("mps") if torch.backends.mps.is_available() else torch.device("cpu")
|
|
model = SeqGRU(63, 128, num_classes=len(classes))
|
|
model.load_state_dict(state["model"])
|
|
model.eval().to(device)
|
|
|
|
with torch.no_grad():
|
|
xb = torch.from_numpy(vaXn).float().to(device)
|
|
logits = model(xb)
|
|
pred = logits.argmax(1).cpu().numpy()
|
|
|
|
cm = confusion_matrix(vaY, pred)
|
|
print("Classes:", classes)
|
|
print("\nConfusion matrix (rows=true, cols=pred):\n", cm)
|
|
print("\nReport:\n", classification_report(vaY, pred, target_names=classes))
|
|
|
|
if __name__ == "__main__":
|
|
main()
|